DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington, DC 20314

Engineer Manual No. 1110-3-141

9 April 1984

Engineering and Design AIRFIELD FLEXIBLE PAVEMENT Mobilization Construction

		Paragraph	Page
CHAPTER 1.	INTRODUCTION		
	Purpose and scope	1-1	1-1
	Traffic classes	1-2	1-1
	Definition	1-3	1-1
	Use of flexible pavements	1-4	1-1
CHAPTER 2.	PRELIMINARY DESIGN DATA		
	Investigation	2-1	2-1
	Exploratory borings	2-2	2-2
	Soil classification and tests	2-3	2-2
	Fill and subbase borrow areas	2-4	2-6
	Availability of base and surfacing	5	
	aggregate	2-5	2-6
	Availability of other construction	l	
	materials	2-6	2-6
CHAPTER 3.	SUBGRADE EVALUATION AND PREPARATION	ON	
	General	3-1	3-1
	Establishment of grade line	3-2	3-1
	Subgrade evaluation test by CBR.	3-3	3-1
	Subgrade density and compaction .	3-4	3-1
	Subgrade stabilization	3-5	3-6
	Fill quality	3-6	3-6
CHAPTER 4.	SUBBASE COURSE		
	General	. 4-1	4-1
	Material source	4-2	4-1
	Suitable materials	4-3	4-1
	Additional requirements	4-4	4-3
ON A DITTER S	PACE COURSE	*	
CHAPTER 5.	BASE COURSE		
	General	5-1	5-1
	Suitable materials	5-2	5-1
	Design CBR of base course	5-3	5-1

		<u>Paragraph</u>	Page
	Minimum base course and surface		
	thicknesses	5-4	5-1
	Base course gradation and tests .	5-5	5-1
	Base course compaction	5-6	5-4
	Proof rolling		
	riour ruiring	5-7	5-4
CHAPTER 6.	BITUMINOUS MATERIALS COURSES		
	General	6-1	6-1
	Selection of materials	6-2	6-1
	Design of bituminous concrete mix	6-3	6-3
	Testing for mix design	6-4	6-6
4	Thickness of bituminous courses.	6-5	6-10
	Bituminous spray coats	6-6	6-11
	breaminous spray coats	0-0	0-11
CHAPTER 7.	FLEXIBLE PAVEMENT THICKNESS DESIGN		
	General	7-1	7-1
	Flexible pavement design curves .	7-2	7-1
	Design requirements	7-3	7-1
	Thickness design	, 3 7-4	7-1
	Design examples	7 - 5	7-13
	Stabilized pavement sections	7-6	7-16
	Special areas	7-0 7-7	7-10
	Special aleas	/-/	/-1/
CHAPTER 8.	SPECIAL SURFACE TREATMENTS AND SPE	CIAL	
	DETAILS		
	General	8-1	8-1
	Surface treatment for improved	-	•
	skid resistance	8-2	8-1
	Porous friction surface course	8-3	8-1
	Prior preparation	8-4	8-1
	Fuel resistant surfacings	8-5	8-1
	Fuel resistant seal coat	8-6	8-2
	Juncture between rigid and	0 0	0-2
	flexible pavements	· 8-7	8-2
	riexible pavements	, 6-7	0-2
APPENDIX A.	HOT-MIX BITUMINOUS PAVEMENTS,		
	DESIGN AND CONTROL		A-1
APPENDIX B.	REFERENCES		B-1
	LIST OF FIGURES		
m' 1 1	m / 1 / 2 / 11 1	1	
Figure 1-1.			
1-2.	Typical all bituminous concrete pa	vement.	
1-3.	Typical stabilized base section.		

- 2-1. Approximate interrelationships of soil classifications and bearing values.
- 3-1. Procedure for determining CBR of subgrade soils.
- 6-1. Selection guide for asphalt cement.
- 6-2. Asphalt paving mix design, typical mix.
- 7-1. Flexible pavement design curves, Army Class I airfield, Type B and C traffic areas.
- 7-2. Flexible pavement design curves, Army Class II airfield, Type B and C traffic areas.
- 7-3. Flexible pavement design curves, Army Class III airfield, Type B and C traffic areas.
- 7-4. Flexible pavement design curves, Air Force lightload pavement, Type B and C traffic areas and overruns.
- 7-5(a). Flexible pavement design curves, Air Force mediumload pavement, Type A traffic areas.
- 7-5(b).Flexible pavement design curves, Air Force mediumload pavement, Type B, C, and D traffic areas and overruns.
- 7-6(a). Flexible pavement design curves, Air Force heavyload pavement, Type A traffic area.
- 7-6(b). Flexible pavement design curves, Air Force heavyload pavement, Type B, C, and D traffic areas and overruns.
- 7-7. Flexible pavement design curves Air Force shoulder pavement.
- 7-8. Flexible pavement design curves Air Force shortfield pavement, Type A traffic areas and overruns.
- A-1. Sieve analysis.
- A-2. Specific gravity of bituminous mix components.
- A-3. Gradation data for hot mix design.
- A-4. Blending of stockpile samples.
- A-5. Gradation data for stockpile aggregates.
- A-6. Blending of stockpile samples.
- A-7. Gradation data for bin samples.
- A-8. Computation of properties of asphalt mixtures.
- A-9. Asphalt paving mix design (typical mix).
- A-10. Batch plant.
- A-11. Continuous mix plant.
- A-12. Dryer drum mixing plant.
- A-13. Types of hot plant mix paving mixture deficiencies and probable causes.
- A-14. Types of hot plant mix pavement imperfections and probable causes.

LIST OF TABLES

- Table 1-1. Pavement loading classifications.
 - 2-1. Sources of information for preliminary subsurface investigations.

- 2-2. Minimum requirements for spacing and depth of exploratory borings.
- 2-3. Soil characteristics pertinent to roads and airfields.
- 3-1. Primary factors affecting subgrade evaluation and suitability.
- 3-2. Choice of CBR tests for pavement design.
- 3-3. Subgrade compaction requirements.
- 3-4. Compaction equipment and methods.
- 3-5. Special cases of subgrade treatment.
- 4-1. Test methods for subbase and base.
- 4-2. Maximum permissible values for unbound subbase.
- 5-1. Base course materials for flexible pavements.
- 5-2. Minimum surface and base thickness criteria.
- 5-3. Gradation of aggregates for graded crushed aggregate base course.
- 6-1. Specialized terminology for bituminous pavement
- 6-2. Tests for aggregate and bitumen mix.
- 6-3. Specifications for bituminous materials.
- 6-4. Aggregate gradations for bituminous concrete pavements.
- 6-5. Procedure for determining optimum bitumen content and adequacy of mix for use with aggregate showing water absorption of 2-1/2 percent or less.
- 7-1. Flexible pavement design curves.
- 7-2. CBR flexible pavement design procedure.
- 7-3. Equivalency factors.
- A-1. Design criteria for use with ASTM apparent specific gravity.
- A-2. Design criteria for use with bulk impregnated specific gravity.